0

Aeroponic Systems

Sorry, we currently have no available products here.

Aeroponics is the process of growing plants in an air or mist environment without the use of soil or an aggregate medium.  Aeroponic culture differs from both conventional hydroponics, aquaponics, and in-vitro (plant tissue culture) growing. Unlike hydroponics, which uses a liquid nutrient solution as a growing medium and essential minerals to sustain plant growth, or aquaponics, which uses water and fish waste, aeroponics is conducted without a growing medium. It is sometimes considered a type of hydroponics, since water is used in aeroponics to transmit nutrients.

Aeroponics is a system wherein roots are continuously or discontinuously kept in an environment saturated with fine drops (a mist or aerosol) of nutrient solution. The method requires no substrate and entails growing plants with their roots suspended in a deep air or growth chamber with the roots periodically wetted with a fine mist of atomized nutrients. Excellent aeration is the main advantage of aeroponics.

Aeroponic techniques have proven to be commercially successful for propagation, seed germination, seed potato production, tomato production, leaf crops, and micro-greens. Since inventor Richard Stoner commercialized aeroponic technology in 1983, aeroponics has been implemented as an alternative to water intensive hydroponic systems worldwide. The limitation of hydroponics is the fact that 1 kilogram (2.2 lb) of water can only hold 8 milligrams (0.12 gr) of air, no matter whether aerators are utilized or not.

Another distinct advantage of aeroponics over hydroponics is that any species of plants can be grown in a true aeroponic system because the microenvironment of an aeroponic can be finely controlled. The limitation of hydroponics is that certain species of plants can only survive for so long in water before they become waterlogged. The advantage of aeroponics is that suspended aeroponic plants receive 100% of the available oxygen and carbon dioxide to the roots zone, stems, and leaves, thus accelerating biomass growth and reducing rooting times. NASA research has shown that aeroponically grown plants have an 80% increase in dry weight biomass (essential minerals) compared to hydroponically grown plants. Aeroponics used 65% less water than hydroponics. NASA also concluded that aeroponically grown plants require ¼ the nutrient input compared to hydroponics. Unlike hydroponically grown plants, aeroponically grown plants will not suffer transplant shock when transplanted to soil, and offers growers the ability to reduce the spread of disease and pathogens. Aeroponics is also widely used in laboratory studies of plant physiology and plant pathology. Aeroponic techniques have been given special attention from NASA since a mist is easier to handle than a liquid in a zero-gravity environment.